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Dilute mixtures of 3He in superfluid 4He have Prandtl numbers easily tunable between 
those of liquid metals and water: 0.04 < Pr < 2. Moreover, superfluid mixture 
convection is closely analogous to classical Rayleigh-Bhard convection, i.e. superfluid 
mixtures convect as if they were classical, single-component fluids. This work has two 
goals. The first, accomplished in Part 1, is to experimentally validate the superfluid 
mixture convection analogue to Rayleigh-BCnard convection. 

With superfluid effects understood and under control, the second goal is to identify 
and characterize time-dependence and chaos and to discover new dynamical behaviour 
in strongly nonlinear convective flows. In this paper, Part 2, we exploit the unique 
Pr range of superfluid mixtures and the variable aspect ratio ( r )  capabilities of 
our experiment to survey convective instabilities in the broad, and heretofore largely 
unexplored, parameter space 0.12 < Pr < 1.4 and 2 < r < 95. Within this large 
parameter space, we have focused on small to moderate r and Pr and on large r with 
Pr w 1. The novel behaviour uncovered in the survey includes the following. Changing 
attractors: at r = 6.0 and Pr = 0.3, we observe intermittent bursting destabilizing 
a fully developed chaotic state. Above the onset of bursting the average length of a 
burst-free interval and the average length of a burst vary as power laws. At r = 4.25 
and Pr = 0.12 we observe a particularly novel reversible switching transition involving 
two chaotic attractors. Instability competition: near the codimension-2 point at the 
crossing of the skewed-varicose and oscillatory instabilities we find that the effects of 
instability competition greatly increase the complexity and multiplicity of states. A 
heat-pulse method allows selection of the active state. Decreasing r suppresses the 
available complexity. Superfluid turbulence : we find that the large-amplitude noisy 
states, previously believed due to superfluid turbulence, are confined to small values 
of r and Pr and are not consistent with superfluid turbulence. Changing instabilities: 
at Pr = 0.19 a wavevector detuning changes the type of secondary instability from 
oscillatory to saddle-node, with an unusual 3/4 exponent time scaling. Very large 
r :  at Pr = 1.3 for r increasing from 44 to 90, we observe the onset of convection 
changing from ordered and stationary to disordered and time-dependent. At the 
beginning of the crossover there are hysteretic transitions to coherent oscillations 
close to the onset of convection. By the end of the crossover convection is time- 
dependent and irregular at onset with the fluctuation amplitude correlated with the 
mean Nusselt number. 
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1. Introduction 
The dynamics of Rayleigh-Bknard convection (RBC) rolls has been one of the most 

valuable experimental arenas for generating and testing ideas on linear and nonlinear 
stability, dynamical systems, chaos, and the transition to turbulence. As such, the 
instabilities of RBC rolls have been the subject of intense investigation for nearly 20 
years. Two of the important parameters governing the character of these instabilities 
are the Prandtl number Pr, which is a ratio of thermal to vortical relaxation times, 
and the aspect ratio r ,  which governs the geometric arrangement and number of 
rolls. Other relevant parameters are the Rayleigh number Ra, the driving force of 
the flow, and the roll wavevector q. The Nusselt number N describes the thermal 
responses of the fluid layer. Variables, parameters, and non-dimensional groups are 
precisely defined in Part 1 of this work (Metcalfe & Behringer 1996). 

No conventional fluid allows continuous experimental exploration of RBC instabil- 
ities at low to moderate Pr (Pr 5 1). Yet, the instabilities and dynamics of convection 
rolls are expected to change dramatically over this range (Busse 1981). Conventional 
fluids, such as water, liquid metals, pure liquid 3He or 4He, and all gases, fall in or 
near this range of Pr but do not cover it well enough to allow a continuous change 
of the instabilities which occur after the onset of convection. However, convecting 
dilute solutions of 3He in superfluid 4He have Prandtl numbers tunable between 
those of water and liquid metals: 0.04 < Pr < 2. This makes superfluid mixtures 
useful for the study of instability and dynamics in highly nonlinear flows. Superfluid 
mixture convection (SMC) is closely analogous to RBC, and in Part 1 we explored 
this analogy. Using a combination of theory and experiment, we showed that SMC 
and RBC differ little as long as the superfluid dissipation length scale &4, where d 
is the fluid layer height. 

Using the apparatus and superfluid mixture described in Part 1, this paper describes 
experiments to probe and survey convective dynamics over unexplored regions of r- 
Pr space. Figure 1 summarizes the range and variety of phenomena studed in these 
experiments. The first region we consider is that having low to moderate values of 
both Pr and r . Within this regime, we explore the destabilization of chaotic attractors 
($2), the dynamics around the codimension-2 point that occurs where the oscillatory 
and skew-varicose instabilities intersect ($3), the large-amplitude noisy states seen 
only at small r and Pr (54), and the effect of wavevector detuning on the oscillatory 
instability (55). In the second region ($6) we fix Pr = 1 and observe the transition 
with increasing r of the onset of convection from stationary to chaotic flow at very 
large r .  

G. Metcave and R. P. Behringer 

2. Chaotic attractor destabilization 
The transition to chaos in low-dimensional systems has been extensively docu- 

mented. As a control parameter is raised, the flow may follow any of several routes to 
chaos, such as period doubling, quasi-periodicity, intermittency, and boundary crises 
(Manneville 1990). But, after a chaotic attractor has been established, what is the 
evolution of the dynamics as the control parameter is further changed? This is an 
important issue in the study of the transition to turbulence and to date has not been 
as intensively investigated as the onset of chaos. 

In this section we report observations on two ways chaotic attractors destabilize 
as the control parameter is raised. The first is found at Pr = 0.30 and r = 6.0 
where a deterministic fully developed chaotic state destabilizes via intermittent bursts. 
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FIGURE 1. Map of aspect ratio-Prandtl number space schematically locating the different phenomena 
described in the text. The map space delimits the range of P r  and r available to our present fluid 
and apparatus. Of particular note is the large fraction of blank, unexplored space. The dashed line 
at low aspect ratio is the region in which noisy states are observed; the solid (dashed) line at large 
aspect ratios indicates steady (noisy) flow near onset. Hexagons indicate representative aspect ratios 
and Prandtl numbers studied by the Los Alamos group (Haucke et al. 1984; Ecke et al. 1987). 

The system twice postpones fully developed chaos by reregularizing nearly chaotic 
time series through the elimination of incommensurate frequencies, most probably 
accompanied by a pattern change. Above the onset of bursting, the average length 
of a burst-free region and the average length of a burst vary as power laws. The 
second is found at Pr = 0.14 and r = 4.25 where we see a novel reversible switching 
transition involving two chaotic attractors with different mean Nusselt numbers. 

2.1. Bursting 
The bursting described below should not be confused with the well-known inter- 
mittency route to chaos (Pomeau & Manneville 1980). Intermittency, which is 
well-documented (Berg6 et al. 1980; Dubois, Rubio & Berg6 1983; Haucke et al. 
1984) in this and other fluids, is one way a laminar flow can lose stability and become 
chaotic. The bursting described here on the other hand is a way an already established 
chaotic attractor loses stability. Both may occur: intermittency leading to a chaotic 
attractor followed, upon further increase in the forcing, by the destruction of the 
attractor via bursting. 

2.1.1. Bifurcations and postponement of chaos 
We consider first how the flow postpones and finally achieves a chaotic state. 

Figure 2 shows experimental Nusselt data for r = 6.0, Pr = 0.30 ( T  = 1.302 K). The 
downward pointing arrow at r = Ra/Ra, = 3.959 indicates that steady convection 
terminates in a discontinuous transition to oscillatory convection with a nearly sinu- 
soidal signal. Reduction of r after the transition shrinks the amplitude of oscillations, 
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FIGURE 2. Nusselt curve for Pr = 0.3, r = 6.0. On the lower-N branch and above r = 3.456, 
convection is time-dependent; all other points show steady convection. Kinks in N at r = 3.456 and 
9.379 accompany the transitions to respectively period-1 (Pl) and knot (K) oscillations. The inset 
shows on expanded scale the oscillatory instability at r = 3.456. The intersection of the straight lines 
fit to the points above and below the kink in N pinpoint the transition. The labels denote different 
kinds of time-dependence as discussed in the text : period-2, P2; quasi-periodic, QP; harmonic, H; 
harmonic quasi-periodic, HQP; and bursting, B. 

until at r = 3.456 time-dependence stops at the kink in the Nusselt curve, shown 
enlarged in the inset to figure 2, and steady convection on the lower-N branch begins. 
With further decrease of r to 2.701, the low-N steady branch jumps back onto the 
the high-N steady convection branch. The frequency at the onset of oscillations 
(non-dimentionalized by the vertical thermal diffusion time z, = 31.4 s) at r = 3.456 
is 6.2. At this Prandtl number, the infinite aspect ratio prediction (Clever & Busse 
1974) for the oscillatory instability is a frequency of fz, = 20 for q at critical qc = 3.14 
and 9 for q = 2.0. 

Although the flow is not visualized, the following scenario accounts for the data. 
At r = 3.959 the skew-varicose instability initiates a wavevector decrease. With only 
six rolls, losing two of them would change the wavevector to nearly 2. At this Pr 
the system is close enough to the skew-varicose/oscillatory codimension-2 point (see 
53 or Part 1)  that a wavevector change to q = 2 is large enough to push the system 
completely through the stable region and into the oscillatory region. The jump back 
onto the initial branch with decreasing r is caused by the system encountering the 
Eckhaus or zig-zag instability that restores the original wavevector to complete the 
hysteresis loop. Based on the instability sequence and the frequency, the transition 
at r = 3.456 corresponds to the oscillatory instability of Clever & Busse (Clever & 
Busse 1974). 
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The spectral peak at the onset of oscillations remains a prominent feature of the 
time-dependence for all r > 3.456. In order to track and distinguish this peak from 
other spectral peaks, we will tag it the Busse oscillation peak. 

The Nusselt curve in figure 2 and the amplitude and frequency of the Busse 
oscillation peak in figure 7 show six distinct stages in the evolution of this system 
before the onset of bursting. Figures 3 and 4 show representative behaviour from 
each region. Figure 3 shows a time series and the corresponding power spectrum 
from each region; 6T is the deviation from the time-averaged temperature difference 
across the layer scaled by the temperature difference across the layer at the onset of 
convection ATc = 0.969 mK. Figure 4 shows a perspective rendering of the time series 
embedded in 3-space with a delay of 0 . 0 5 1 ~ ~  (4 points); different delays produced 
no substantive changes. The time series were collected automatically as described in 
Part 1. Following each change in heat current Q, the experimental control system 
waited 20~,-252, before collecting points; the data rate was 2.5 Hz with a frequency 
resolution of 1.2 mHz or about 0.047,. 

At r = 4.88 the system period doubles (P2), and at r = 7.20 adds a lower 
incommensurate frequency to become quasi-periodic (QP). At r = 7.684 (H) the 
incommensurate frequency is eliminated and the amplitude of the Busse oscillation 
peak shrinks while that of the period-doubled peak grows. The frequency ratio 
between the two peaks is 2/1, but the spectrum appears more like a fundamental 
with one harmonic than P2. The difference is most evident from the phase portraits. A 
lower incommensurate frequency reappears at r = 8.52 (HQP) and again is eliminated 
at r = 9.379 (K). The new phase portrait makes a trefoil knot: the trajectories 
departing from one loop pass through the loop on its left and then form the loop 
on its right. If we label the lowest frequency in the knot spectrum f l ,  the rest of the 
knot spectrum consists of integer multiples ifl, i = 1,. . . , lo,  with f l  and f 4 ,  which is 
the Busse oscillation peak, having the largest amplitudes. 

There are two features of this set of transitions to which we would like to draw 
particular attention. The first is that the system twice postpones the onset of chaos. 
The following sequence is repeated with increasing Ra as the system goes through 
the regions QP+H and HQP-+K. A sharp commensurate spectrum gains an incom- 
mensurate component at lower frequency as r is raised. With further increase in r ,  a 
transition to chaos begins, signalled by a broadening of spectral lines and an increase 
in low-frequency broad-band noise, shown in figure 5. As the level of disorder rises, 
the original incommensurate frequency is eliminated and the time-dependence rereg- 
ularizes. The spectral peaks immediately after are again sharp and commensurate, 
although not the same set of lines as the previous sharp set. The reregularization 
presumably signals a pattern change. Regularization is apparently not possible a 
third time and the formation of a strange attractor of high dimension occurs. 

The reregularization occurs spontaneously some time after an increase in the heat 
flux Q and the transitions take place with Q fixed. Figure 6 shows two time records 
at r = 7.740 and 9.379, values at the transitions QP+H and HQP+K respectively. 
The arrows in the figure suggest the time interval over which the signal changes from 
one form to another. The transition HQP+K is accompanied by a noticeable kink 
in the Nusselt curve. No changes in N are discernible for QP-H. There are no 
indications of hysteresis in the transitions. In figure 6(a), about 352, after changing Q, 
the pattern shifts. (There is about a 202, delay between raising Q and the start of the 
time record.) In figure 6(b) the shift occurs after about 962,. That is, the transitions 
occur about 1 and 3 horizontal thermal diffusion times respectively after raising Q. In 
both cases the change is quick, taking only 42,-52,. 
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FIGURE 3. Time-dependence at (Pr ,  r )  = (0.3, 

fi, 

6.0). ( a )  Period-1 Ra/Ra, = 4.879. (b )  Period-2 . ,  
RalRa, = 7.095. ( c j  Quasi-periodic RajRa, = 7.628: (dj Harmonic oscillation RalRa, = 8.406. (e )  
Quasi-periodic harmonic RalRa, = 8.641. (f) Knot oscillation RalRa, = 9.653. 
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FIGURE 4. Phase portraits from the data of figure 3. Perspective and extent are the same for each 
portrait, except the last where the length of one side of the box is about 6lI3 times that of the 
others. 

The second feature of particular interest is that while the Busse oscillation peak 
remains prominent even into the bursting region, the frequency increases with Ra and 
the amplitude grows and shrinks. Figure 7 plots the frequency and amplitude of the 
Busse oscillation peak as a function of ro = Ra/Rao - 1, where Rao = 3.959RaC is 
the onset of the oscillatory instability. This suggests that rolls oscillating transverse to 
the local wavevector remain an important Part of the system dynamics, even though 
the pattern at larger Ra assuredly does not consist of straight rolls. 
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FIGURE 5. Spectra on semi-log scale for the indicated values of r showing how an initially sharp 
spectrum broadens and the low-frequency broad-band noise rises with increasing r. With further 
increase in r, though, the fluid returns to a sharp spectrum, having postponed the onset of chaos. 
The left-hand column shows the region QP-H; the right-hand one shows HQP-rK. The broad 
feature at fz, = 29 is an artifact of the temperature control. 

The rise in low-frequency broad-band noise occurs simultaneously with an unlock- 
ing of frequencies. For example, in the knot region (K) f l  and f 4  are locked at 
T = 9.653. As r increases these frequencies increase but not at the same rate, so that 
by T = 11.727 f 4 / f l  = 4.19. As this unlocking progresses, the low-frequency noise 
rises. 

The final chaotic state before the onset of bursting has an irregular time series 
with a broad-band spectrum, which is shown on log-log scale in figure 8. This 
spectral shape - nearly flat for several decades followed by a sharp power-law fall-off 
- has been seen in several convection experiments (Ahlers & Behringer 1978; Gollub 
& Benson 1980), although, the fall-off is significantly steeper here than in many 
experiments. We have also tried to calculate the box dimension d b  of the attractor 
using the Grassberger-Proccacia algorithm as modified by Theiler (1987) to be more 
efficient for high-dimensions. The value of d b  obtained by this analysis continued 
to grow as we increased the embedding dimension for embedding dimensions up to 
25. However, false nearest neighbour analysis (Kennel, Brown & Abarbenel 1992) 
indicates that the attractor should embed in eight dimensions. 
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FIGURE 6. Spontaneous changes from chaotic to regular signals occur at fixed heat flux and 
demarcate at r = 7.740 (a) the transition QP+H and at r = 9.379 (b)  the transition HQP+K. The 
heat flux was changed about 202, before the time origins in the figure. The arrows in each figure 
suggest how long it takes the pattern to change. The transitions occur about 1 and 3 horizontal 
diffusion times respectively after raising the heat flux. 

2.1.2. Destabilization 
We now turn to the experimental observations of bursting in superfluid mixture 

convection. After the sequence of transitions detailed above, figure 9(a) shows for 
r = 15.85 (with fixed heat flux) the time-dependence of AT after the onset of fully 
developed chaos. The instrumental noise is smaller by a factor of lo3 than the 
amplitude of 6T .  Figures 9(b) and 9(c) show examples of the bursting that occurs as 
r is raised. The bursts are well-defined and occur more frequently for higher r .  Bursts 
always increase AT and consequently decrease N .  

For a given r ,  we take time series at a 2.5 Hz data acquisition rate for about 2 
days and then count the number n and length b of each burst, as well as the length 
1 of the time interval between bursts. Since the start and finish of any given burst is 
sharp and well-defined, the count is easily done by hand. Examples of a typical burst 
and a typical burst-free interval are marked in figure 9(b). The value of n ranges 
from 1 to 60 for 15.85 < r < 26.35; n is sensitive to external noise and can be raised 
substantially at a given r by increasing the thermal fluctuations due to temperature 
regulation at the bottom plate thermal reservoir of the cell. Increasing the thermal 
fluctuations at the bottom plate tenfold increases the fraction of time spent bursting 
by about 30%. 

In figure 10 we plot on log-log scales the average duration of a burst-free interval 
( 1 )  versus r - rb ,  where r b  is the scaled Rayleigh number for the onset of bursting. 
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Ra/RaTl 
FIGURE 7. The amplitude and frequency of the Busse oscillation peak as a function of RalRao - 1. 

The different regions are labelled as in figure 2. 
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FIGURE 9. Time series illustrating bursting from a chaotic attractor. Each part shows every 
20th point in a 20 hour data segment at the indicated value of r .  In ( b )  b and 1 are typical 
examples of respectively a burst and an interval between bursts. The time axis origin is arbitrary. 
ATc = 0.969 mK and z, = 31.4 s. Bursts always increase AT.  

The error bars are k(l)/n’’’. The solid line is a fit of the data to a power law 
(1) = Al(r - rb)-’. The fit is very good and gives an exponent y = 4.6 & 0.1. Plotted in 
figure 10(b) are data for the average burst duration (b)  versus r - rb. It too follows a 
power low (b) = Ab(r - rb)6 .  A fit gives 6 = 2.2k0.1. The two points at lowest r in the 
bottom of figure 10 are from runs that had only one burst in two days of data-taking. 
These two points were left out of the calculation of y ,  as the time between bursts was 
not determined, but were included in that of 6. 

The distributions of burst and interburst durations are shown in figure 11 for 
r = 18.370. This figure plots histograms of I and b from a run lasting 5 days 
and showing 210 events in each histogram. In 52.1.3 we discuss several models 
that reproduce aspects of these data, but the power-law behaviour of (b) and the 
distribution of bursting times is unpredicted from any model and raises the question 
of what kind of relation - if any - there should be between y and 6, and what such a 
connection would imply about the structure of the changing attractor and the global 
phase-space. 

2.1.3. Possible models 
We are aware of two possible models for the bursting data. In the model of Grebogi, 

Ott, Yorke and coworkers an attractor grows with increasing Y until it touches (at r b )  

the stable manifold of a nearby unstable periodic orbit. This is termed a point of 
‘crisis’ and leaves an unstable region through which orbits can leave the attractor. An 
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FIGURE 10. Loglo plots of the average duration of burst-free ( 1 )  and burst (b )  intervals versus 
log,,(r - r b ) .  ( 1 )  and ( b )  are calculated from time series such as those of figure 9. Lines are 
least-squares fits of the data to power laws with the resulting exponents indicated. For ( I )  the 
amplitude of the power law fit log,, A, = 7.0 0.1; for ( b )  log,, Ab = -1.0 & 0.1. From both fits 
r b  = 13.9 k 0.4 is obtained. 

ejected orbit moves along the unstable manifold of the periodic orbit into the global 
phase-space and eventually returns to the chaotic attractor. The predicted behaviour 
just past a point of crisis is that, for the most part, the system will continue on the 
remnant of the strange attractor, as before, but will now make intermittent, often 
large, excursions into previously unused parts of phase-space with the average interval 
between excursions varying with (r-rb) as a power law (Grebogi et al. 1987; Grebogi, 
Ott & Yorke 1983). Since this crisis-induced intermittency is caused by interaction of 
the strange attractor with unstable manifolds, and since unstable periodic orbits (and 
their manifolds) are dense in any neighbourhood of a strange attractor, crisis-induced 
intermittency is a generic possibility for a chaotic attractor. 

Another mechanism for producing intermittency in dynamical systems was origi- 
nally developed for modelling turbulent wall layers (Aubry et al. 1988; Holmes 1990). 
The ideas rest upon the dynamical system obeying some symmetry. The symmetry in 
turn brings structural stability to heteroclinic cycles connecting limit sets, which can 
be chaotic sets. In the absence of perturbation, orbits are attracted onto one limit set 
or another. Stone & Holmes (1990) have shown for a model system of one homo- 
clinic connection that almost any variety of random or deterministic perturbations 
will produce bursting, and they have calculated ( 1 ) ,  which they call the mean passage 
time, as a function of the perturbation amplitude e and the size of the largest unstable 
eigenvalue 1,. The mean passage time in their model is ( 1 )  = KO + ~ ; l ( ~ l n ( c ) ~  + K1) 
where €41, and KO and K1 are constants depending on the particulars of the model. 
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events. Both distributions are peaked and (the 1 distribution particularly) skewed towards longer 
events. The insets are enlargements of the distributions nearer zero. The bin size for each histogram 
is 17,. 

Stone & Holmes also predict that the distribution of passage times should have an 
exponential tail. The present experimental histograms have an extended tail, but the 
number of events in a typical run, while sufficient to accurately calculate ( I ) ,  are not 
numerous enough to confidently distinguish between distributions. 

Both models qualitatively agree with aspects of the data, though neither model 
seems capable of addressing the data for the burst durations because both rely on 
linearizing about a point in phase-space. Modelling the bursts would seem to require 
a global analysis. 

2.2. Switching 

Our second example of chaotic attractor destabilization is a switching transition 
between two different chaotic attractors. For r = 4.25 and Pr = 0.13 (T  = 1.000 K) 
steady convection loses stability to time-dependence at r = 2.8. Unlike the bursting, 
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FIGURE 12. Nusselt curve for Pr = 0.13, r = 4.25, at which parameters switching occurs. The 
squares show time-dependent and the dots steady convection. Lines connecting squares indicate 
the state-to-state switching discussed in the text. The inset shows an example of switching between 
( r , N  - 1) = (2.500,0.2799) and (2.399,0.3345). ATc = 8.654 mK and z, = 7.05 s. 

where time-dependence begins as a periodic motion and with increasing r gradually 
becomes fully developed chaos, here the initial time-dependence is already chaotic. 
Figure 12 shows the Nusselt curve. The squares represent the branches of time- 
dependent convection; the dots are points of steady convection. The jump transition 
from steady to time-dependent convection occurs reproducibly at r = 2.8, as does the 
reverse jump transition from time-dependence to steady convection at r = 1.45. 

On the time-dependent branches, as r is increased through the range 2.2 5 r 5 2.8, 
the chaotic state with higher N loses stability to the one with lower N via switching 
between the states; the inset to figure 12 shows a sample time record. Positive 6T 
corresponds to low N ,  and negative 6T to high N .  This time series is from the 
middle of the switching region. Spectra for the low- and high-N states are shown in 
figure 13. For r < 2.2 (and the system in the chaotic state) the fluid is always in the 
high-N state. As r is raised above 2.2, the system begins to switch back and forth 
between the high- and low-N states. As r is raised further, the system spends more 
and more time in the low-N state, until for r > 2.8 the transition is complete and 
the system remains in the low-N state. The solid lines in the figure connect paired 
high- and low-N states (and are not vertical because we use a constant heat flux). 
This transition is completely reversible: the Nusselt curve for the chaotic states is the 
same for increasing and decreasing r .  We believe that this is the only experimental 
observation to date of switching of this type. 
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FIGURE 13. Typical spectra from the low- and high-N states, respectively at r = 5.185 and r = 2.010. 
Also shown for comparison is a spectrum from steady convection at r = 1.316. The acquisition rate 
for these data was 1.67 Hz. The feature at f ~ "  = 4 is an artifact of the temperature control. 

A final experimental observation concerns the average frequency (f) or first moment 
of the power spectra for the switching states. Defined as 

where PSD(f) is the power spectral density at frequency f ,  (f) increases linearly with 
increasing r ,  as shown in figure 14. The squares are calculated from the spectra of 
the low-N state and the triangles are calculated from those of the high-N state. The 
line in figure 14 is a least-squares fit to the squares only and fits the data well. The 
(f) values calculated from the high-N state cluster around the line extended from the 
low-N state but do not follow it. 

The analysis of Grebogi et al. (1987) and Grebogi, Ott & Yorke (1983) can also be 
adapted to the switching transition. The mechanism is for two attractors (only one 
of which is in use by the system) to grow as r is increased, until at the crisis the 
two attractors simultaneously touch at their mutual basin boundary. This leads to an 
overlap of the two attractors, which merge but remain apparently distinct for some 
range of r :  the system will remain on one or the other of the previously distinct 
attractors for some, possibly long, period of time before switching suddenly to the 
remnant of the other attractor. The overlap becomes greater and greater as r increases, 
until the attractors are completely merged. Only in the presence of a global symmetry 
is it reasonable to expect the simultaneous touching of attractors, but more general 
(and complicated) scenarios can be devised by removing the symmetry requirement 
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FIGURE 14. The scaled average frequency of the power spectrum versus r .  The squares are for 
the low-N state and the triangles are for the high-N state. The least-squares fitted line shown is 
7,(f) = 0.026r - 0.01. The fit uses only the squares. 

(Ott, private communication). In such a scenario, there are two chaotic sets: A, 
associated with the upper Nusselt state, and A1 with the lower state. Below r = 2.2, 
A, is an attractor, and A1 is a non-attracting chaotic set. At r = 2.2, A, undergoes a 
crisis and destabilizes. Between r = 2.2 and r = 2.8, neither set is attracting by itself. 
Rather, both states are weakly unstable, so that the trajectory lingers near one or the 
other state for substantial times before moving to the the other set. At r = 2.8, A1 
undergoes a stabilizing inverse crisis and becomes the attractor for the system. 

3. Complexity near a codimension-2 point 
The Prandtl number for superfluid mixtures can be set in the range 0.04 < Pr < 2. 

In the upper part of this range, the first secondary instability encountered as Ra 
is raised well above Ra, is the skewed-varicose instability. It is, at its onset, a 
stationary instability causing a periodic thickening and thinning of the convection 
rolls. The new roll shape, however, is accompanied by mean flows and is likely 
to initiate a pattern change by, for instance, nucleating a defect (Newell, Passot & 
Souli 1990). The end result of the skewed-varicose instability is that, starting from 
a parallel roll planform, one roll pair is ‘consumed’ and the system stabilizes at a 
smaller wavevector (Croquette 1989). At lower P r  the first secondary instability is 
the oscillatory instability (Clever & Busse 1974; Busse 1981). Ecke and coworkers 
(Mainieri, Sullivan & Ecke 1989; Deissler, Ecke & Haucke 1987) have used SMC to 
study the oscillatory instability in a cylindrical cell of unity aspect ratio but at smaller 
Pr than considered here. Others (Chiffaudel, Perrin & Fauve 19891; Libchaber, Fauve 
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FIGURE 15. The Nusselt curve at Pr = 0.23 and r = 8 in the neighbourhood of the codimension-2 
point, strongly showing the effects of competition between the skewed-varicose and oscillatory 
instabilities. Dots mark points of steady convection and crosses mark points of time-dependent 
convection. Branches A-D show only steady convection. Branch E is steady for r < 2.85, oscillatory 
otherwise. Branches F and G show only time-dependent convection. Arrows indicate the transitions 
made as the heat current is adiabatically changed. 

& Laroche 1983) have used mercury (Pr = 0.025) to study oscillatory convection, but 
with the limitation to a single Prandtl number and a single aspect ratio (for a given 
experiment). In Part 1, finding the intersection of the skewed-varicose instability and 
the oscillatory instability at a Prandtl number close to that predicted was taken as 
additional evidence of the superfluid mixture convection-Rayleigh-Binard convection 
correspondence. In this section we investigate the dynamical behaviour near the 
codimension-2 point (Guckenheimer & Holmes 1983), which has not previously been 
well characterized owing to the experimental difficulties of accessing such points 
(Brand, Hohenberg & Steinberg 1984; Rehberg & Ahlers 1985; Sullivan & Ahlers 
1988). 

3.1. Complexity from competing instabilities 

The codimension-2 point of superfluid mixture convection, which lies near Pr = 0.23 
( T  = 1.161 K) for r = 8.00, shows a remarkably complex array of accessible states, 
as seen in the Nusselt data in figure 15. In what follows, the wavevector is kept close 
to critical by setting I' to be an even integer. Wavevector changes (imposed through 
either two-fluid or mechanical means) presumably cause interesting modifications to 
the effects found below, but we leave those studies for the future. 

At a given Ra, as many as four different states are reproducibly accessible, de- 
pending on the history of the system. The arrows in figure 15 show the path selected 
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r d To f f T u  f T ”  

(cm) (s) (Hz) (obs.) (pred.) 
8 (branch E) 0.2849 6.2 0.03 0.2 10.2 
8 (branch F) 0.2849 6.2 0.73 4.5 10.2 

4 0.5747 25.1 0.14 3.5 10.2 

TABLE 1. Frequencies of oscillatory states for Pu = 0.23. For comparison the predictions of Clever 
& Busse (19741, and Busse (1981) for qc are also shown. 

when the heat flux Q is adiabatically changed. At the first secondary instability the 
transition is from state A to state D. States B and C can be reliably found by applying 
heat pulses of specific duration (43.3); branches A-D and H show only stationary 
convection. At higher Ra/Ra, we still find multiple stable states: stationary and 
time-dependent states may be locally stable at the same Rayleigh number, the chosen 
state depending on the exact path taken. On branch E, for example, a forward Hopf 
bifurcation occurs at Ra/Ra, = 2.85, but the transition from the stationary branch D 
is into the middle of the oscillatory region, and shortly after period-doubling branch 
E becomes unstable to branch B. Branch F begins similarly to the true oscillatory 
instability, and oscillatory branch F coexists with chaotic branch G. Branch G shows 
chaos at larger Ra/Ra,, at lower Ra/Ra, shows quasi-periodic transitions to chaos, 
and has other unusual features, such as a hysteresis loop. With decreasing Ra, branch 
G makes a transition onto steady branch B. Branch H was brought about by a 
sudden drop in AT which took the system from F to A (but still above the onset of 
convection). Subsequently when raising Ra to try to induce the transition terminating 
A, we found that A was stable until jumping onto B at Ra/Ra, = 2.42. 

This strikingly complex behaviour is presumably due to the competition between 
the skewed-varicose and oscillatory instabilities, and we emphasize that the Nusselt 
curve of figure 15 is exactly reproducible to experimental accuracy - and, in fact, 
most of the branches show overlaying data from several different runs. 

Table 1 lists the frequencies of several simply periodic states along with oscillatory 
instability predictions for this Pr (Clever & Busse 1974). Figure 16 shows time series 
and power spectra illustrating the variety of time-dependence among the complex 
of states. As physical processes not accounted for in the calculations must become 
important near the codimension-2 point, it is not surprising that measured and 
predicted frequencies do not agree. None of the frequencies at Pr = 0.23 can be 
reasonably accounted for in the standard instability scheme. 

3.2. Complexity suppressed with decreasing r 
As r is lowered to 6 and then 4, while keeping the Prandtl number fixed at Pr = 0.23, 
regions of multi-stability still exist at and above the first secondary instability but 
their overall complexity lessens considerably as r decreases. At the first secondary 
instability for r = 6 (figure 17a) there are two states available from the initial steady 
branch A, both of which are time-dependent. The transition from the initial steady 
state was highly sensitive to the initial conditions; attempts to prepare identical steady 
states did not yield the same first secondary instability. The arrows in figure 17(a) 
locate the transitions for three different runs. The time-dependence of branches B and 
D and branch C of figure 17(c) are similar to the non-periodic ‘noisy’ states discussed 
in $4 although, in all other observed instances these states had the smallest Nusselt 
number of any accompanying states, time-dependent or steady (except of course the 
preconvective state). Here, branch B at r = 6 has higher N than oscillatory branch C. 
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FIGURE 16. Examples of time-dependence near the codimension-2 point. The left-hand column shows 
time series taken at various points of figure 15; the right-hand column shows the corresponding 
power spectrum (PSD in units of Hz-') on log-linear scales. (a) Branch F: r = 3.50, N - 1 = 0.746; 
(b )  branch F: 4.58, 0.882; (c )  branch G: 4.51, 0.720; ( d )  branch G: 4.56, 0.726. 

As the arrow indicates, branches B and D are connected by a jump transition which 
bypasses the periodic behaviour of branch C. State C is periodic with a forward Hopf 
bifurcation at r = 3.1. From there it undergoes a period-doubling-like sequence up 
to period-4. However, the sequence is interrupted before achieving period-8 and the 
component of the spectrum at f / 4  becomes unexpectedly large. 

At r = 4 (figure 17b) jump transitions at the first secondary instability go away 
altogether. Instead there is the 'fork' at r = 8.5 from which both the steady branch A 
and the periodic branch B can grow. If the point of instability is crossed by taking 
small (about 1%) steps in heat flux Q, then one stays on steady branch A, but if the 
instability point is crossed with larger (about 5 % )  steps in Q, then one crosses onto 
oscillatory branch B. By decreasing Q in small steps while on B one finds that B is 
a forward Hopf bifurcation beginning at the 'fork' with a dimensionless frequency at 
onset of 3.5. 

One should compare figures 15 and 17. While it is still true that multiple stable 
states coexist at and above the first secondary instability for the three aspect ratios 
studied, the degree of complexity is severely depressed at lower r and is but a remnant 
of that evident in figure 15 for r = 8. 
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3.3. Thermal pulses to initiate transitions 
For Pr = 0.23 and r = 8 there are three stable states accessible to the system from 
the end of branch A. If the Rayleigh number is raised adiabatically across the end of 
branch A, the system goes to branch D. By adiabatic, we mean a small step change 
in Q followed by sufficient time for the system to relax. On the other hand, if we 
change the heat step to a heat pulse (defined below), short pulses leave the system on 
A; longer pulses produce the same effect as a heat step. The transition finds branch B 
or C for narrow, non-overlapping windows of pulse length. Figure 18 shows the data. 
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In figure 18(a) we plot the Nusselt number obtained after applying a heat pulse 
versus the pulse length normalized by 7,. The unnormalized pulse length labels the 
top axis of the figure. Before application of each pulse, we arrange the system to be 
on branch A at r = 1.809, which is just below the termination point of branch A. The 
amplitude of the pulse is such that if we leave it on, we always obtain the transition 
A-D. 

Upon application of a heat pulse, AT immediately increases (decreasing N ) ,  as if a 
transition were taking place. If the pulse is shorter than 657,, then AT will decrease 
again after the pulse ends and return N to its original value. Pulses longer than 807, 
are equivalent to heat steps and branch D always results. In between 65 and 80 there 
are two non-overlapping windows within which pulses reproducibly cause transitions 
to branches B or C. The vertical dotted line in figure 18(a) marks the horizontal 
thermal diffusion time calculated with respect to the long side of the cell. 

Figure 18(b) shows a plot similar to that of 18(a) but for the transition E+D. 
Here the dotted line marks the horizontal thermal diffusion time calculated using 
the short side of the cell for the characteristic length. The difference in pulse lengths 
between figures 18(a) to 18(b) needed to cause transitions may indicate that the latter 
case requires some propagation along roll axes while the former requires propagation 
across rolls. 

In this section we have seen how the bifurcations near the anticipated codimension- 
2 point unfold with surprising richness. This rich behaviour vanishes away from the 
codimension-2 point (see Part 1) and diminishes with aspect ratio. Evidently, the 
coupling between various modes either stabilizes states which ordinarily are not 
stable, or makes accessible a variety of states which ordinarily are not accessible. 
Having three experimental parameters (r , Pr, Ra) also opens the possibility that this 
system may be able to experimentally access phenomena of codimension higher than 
2. We leave this issue to future work. 

4. Noisy state at small r and Pr: superfluid turbulence? 
In investigating secondary instabilities, such as the oscillatory or skew-varicose, we 

encountered noisy states which are not simply related to either of these instabilities. 
These include at Pr = 0.23 branches B and D for I‘ = 6.00 and branch C for 
r = 4.00. We consider one more example in figures 19 and 20. Figure 19 shows 
Nusselt data for P r  = 0.14 and r = 4, illustrating this unusual instability not 
predicted from linear stability calculations. The higher-N state is steady convection 
until the oscillatory instability, which begins at the cusp at r = 4.814. The noisy state 
is the time-dependent branch at lower N for r > 1.5. The chief characteristics of the 
new state are that it may be spontaneously excited from nearly anywhere along the 
initial branch of steady convection, and that time-dependence is large amplitude and 
irregular. This suggests that the state is not related to any of the linear instabilities 
of straight convection rolls. Figure 20 shows a typical ‘noisy’ time series with a time 
series from steady convection for comparison. 

These unusual states have large-amplitude fluctuations of N with a broad charac- 
teristic peak and a f P 4  fall-off of the power spectrum. The fall-off is similar to those 
states previously reported by Wheatley, Ecke and coworkers (Haucke et al. 1980; 
Ecke, Haucke & Wheatley 1987) at lower P r  and r in superfluid mixtures and by 
Ahlers & Behringer (1978) in pure 4He at P r  = 0.78 and aspect ratios of r = 4.7, 5.3 
and 57. It is interesting to note that even with the strenuous set of perturbations 
applied to the system in producing figure 15, these large-amplitude fluctuations were 
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FIGURE 19. Nusselt curve for P r  = 0.14 and r = 4.0. The crosses (upper data) show steady 
convection, the squares time-dependent convection. The oscillatory instability occurs at r = 4.814. 
The low-N branch shows large-amplitude irregular fluctuations. 
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FIGURE 20. Time series (top) typical of the noisy state ( r  = 5.230), with a typical time series 
(bottom) from the steady branch ( r  = 1.278) for comparison. z, = 8.04 s;  ATc = 6.849 mK. 
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FIGURE 21. Occurrences of the noisy state in the Pr-T plane. The filled symbols indicate that 
the noisy state was excited; the open symbols that the noisy state was not excited. There is no 
differentiation between spontaneous and induced transitions to the noisy state. Triangles represent 
data for cylindrical and rectangular cells of r = 1, 2 and P r  < 0.1 (Haucke et al. 1981; Ecke et al. 
1987). Not shown are the data of $6 for P r  = 1.3 and r > 40 for which the noisy state was never 
seen, or data for which Ra/Ra,  was not raised above 1.5 (e.g. the data of Part 1). The noisy state 
has never been observed outside the dashed box. 

never once excited at I' = 8. Yet for most P r  investigated by us at r < 6 this 
transition to the noisy state has always been observed after raising Ra not too much 
above Ra,. 

The noisy state has several properties in all the above examples: (i) it almost always 
has lower N for a given Ra than any other convective state (see however, branch B 
for r = 6.00, Pr = 0.23); (ii) it can be excited from another state but the reverse does 
not happen; (iii) the probability of exciting the noisy state increases if relatively large 
steps in Q are taken; (iv) the amplitude of the noise is relatively large, - O.lAT,; (v) 
the noisy state always terminates well above the onset of convection and does so by 
a jump transition back to a steady convection branch; (vi) the spectra are broadband 
with power-law fall-offs; (vii) the noisy states occur only for low Pr and low r .  This 
final point is made in figure 21 which shows where we observed the noisy state in 
a parameter space of P r  and r .  Our data are given by circles, with closed circles 
indicating a point where the noisy state was seen and open circles a point where it 
was not seen. Notably, the noisy state was not seen for r = 8, nor was it seen for 
aspect ratios above 40 (and P r  = 1). The triangles in the figure are representative 
of results from Haucke et al. (1980) and Ecke et al. (1987). These authors, who used 
smaller r and Pr than here, reported noisy states close to the onset of convection. 
They found that their ability to excite the noisy state was a function of the history of 
their experiment. By cycling the mean temperature across the superfluid transition, 
they made the occurrence of the noisy state less probable. They interpreted these 
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observations to mean that the noisy state was driven by the presence of quantum 
vortices. 

We suggest that the noisy states we observe may be related to another effect, 
however, such as a finite-amplitude instability which occurs for small r and P r .  
In support of this hypothesis, we note that it is surprising that the noisy states do 
not occur at larger r in these experiments. Larger r implies larger counterflow 
velocity, and therefore an increased probability of nucleating superfluid vortices. 
Specifically, vortex generation is a function of the counterflow velocity Iu, - us]  which 
in turn consists of a non-convective part proportional to A T / d  and a convective part. 
The counterflow velocity grows with increasing Ra and with increasing d-'. Since 
AT, K d-3, the non-convective counterflow velocity grows as d-4. The convective 
counterflow presumably grows inversely as the height of the layer. In either case, 
we might expect the effect to be more likely to occur with increasing aspect ratio 
(since this implies decreasing d) ,  which is the reverse of our observations. We note 
that Chiffaudel, Fauve & Perrin (1987), using mercury in a rectangular container with 
horizontal dimensions 6.25 x 4.25 (in units of d) ,  did not report any such noisy state. 
However, this aspect ratio sits near the proposed noisy state boundary of figure 21. 
Clearly the existing data do not allow definitive conclusions on this state, and flow 
visualization would be very valuable. 

5. Secondary bifurcation changes with aspect ratio detuning 
It is also interesting to ask what would happen to the secondary instabilities if the 

aspect ratio were detuned from an even integer. A complete study of aspect ratio 
detuning is beyond the scope of the present work. However, we present some initial 
results which suggest the presence of interesting dynamical behaviour. This is also a 
case where changing r completely changes the secondary instability. 

We show in figure 22 Nusselt data for r = 7.8 and Pr = 0.19. For the critical 
wavevector 4,. obtained for an even integer r ,  rolls become unstable to the oscillatory 
instability upon increasing Ra (Part 1). Here, the non-integer aspect ratio detunes 
the critical wavevector by 2.5%, causing the initial steady convective state to become 
unstable to a finite-amplitude periodic state at r = 1.756. Typical time series for this 
state are given in figure 23, along with the oscillation period z(r).  The data for z 
follow a power law z = A,(r - rJ-8. Notably, a fit to the data gives B = 0.75 0.02. 
If Ra is increased past r = 1.84, a new stable state is reached. 

A finite-amplitude periodic state of diverging period z can occur after a saddle- 
node bifurcation, provided there is a mechanism to return the system trajectory to 
the neighbourhood of the former fixed point. A saddle-node bifurcation is a likely 
occurrence for a codimension- 1 bifurcation. However, in that case, if the bifurcation 
parameter is p = r - rs, then z is determined chiefly by the time to negotiate the 
region near the former fixed point, and z - ,L-'/~, whereas our data show a 3/4 
exponent. We can suggest two possible reasons for the larger exponent. First, the 1/2 
exponent may pertain only asymptotically close to the bifurcation point: the present 
experiments may not have sampled the asymptotic regime. Or, second, this may be a 
different kind of saddle-node bifurcation. 

The normal form for a standard saddle-node connection is 

dx/dt = p + x2 .  (5.1) 

For p < 0, this has a stable fixed point at - ( - - ~ ) l / ~  and an unstable fixed point at 
+(-P)'/~; for p > 0 it has no (real) fixed points. In this model, the relevant time scale 
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FIGURE 22. Nusselt curve showing a saddle-node connection beginning at r = 1.756 for r = 7.8, 
Pr = 0.19. The inset shows the bifurcation region on expanded scale. The time-dependent saddle 
branch connects two steady convection branches. 

is proportional to /pl-1'2. However, the data more closely resemble the model 

dxldt = p + x4. (5.2) 

This has fixed points for k(-p)'I4 for negative p and no (real) fixed zeros for positive 
p. For this form, the time scale goes as /p1-3'4 in accord with the present experiments. 
However, there would have to be special circumstances, such as special symmetry, for 
such an unusual bifurcation to occur. This will be a topic for future study. 

6. The transition to large aspect ratio convection 
What happens at the onset of convection as the aspect ratio is made larger and 

larger? One effect has been recognized for some time: for smaller r ,  the sidewall 
drag substantially elevates the critical Rayleigh number above the value predicted for 
a horizontally infinite-layer. As r increases above about 8, the effect of the sidewalls 
lessens, and Ra, approaches its infinite layer limit (Behringer 1985; Charlson & 
Sani 1975). This has been followed with investigations of the ordering effects of 
sidewalls. Meyer, Ahlers & Cannell (1987) used a low-T cell that reduced sidewall 
forcing and found at onset spatially disordered but still time-independent roll patterns. 
Other experiments visualizing up to 36 rolls (Croquette 1989) show that the onset of 
convection consists of ordered, stationary rolls. 

The effect of primary interest in these experiments is the time-dependence arising 
at the onset of Convection in very large-r experiments. Time-dependence at onset 
is specifically excluded by infinite-r calculations (Chandrasekhar 1961), but it is 
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FIGURE 23. Saddle-node oscillations from figure 22. (a) r = 1.761; (b )  r = 1.766; (c) r = 1.775. (d)  
Oscillation period T versus r - r, on log-log scale, where I, is the saddle bifurcation point. The solid 
line is T = A,(r - r,)P with log,, A, = 1.05 f 0.02, r, = 1.76 f 0.01 and p = -0.75 0.02. Note that 
7 begins to increase just before jumping onto the lower steady branch of figure 22. 

observed in experiments. For a r = 57 cylindrical cell, Ahlers & Behringer (1978) 
found non-stationary convection close to the onset of convection. Recent experiments 
with pressurized COz gas in I' = 78 and r = 86 cylinders report spiral chaos for 
r 2 1.4 and large rotating spirals when the fluid is non-Boussinesq (Bodenschatz et al. 
1991; Morris et al. 1993). At issue are the characteristics of this time-dependence and 
how it arises with systematic increase in r .  In this section, we use the height changing 
capability of our experiment to investigate the changeover from order to disorder at 
the onset of convection as a function of increasing aspect ratio for 44 < r < 90. 

The Prandtl number for these experiments is held constant at Pr = 1.30 (T = 
2.086 K), and the cell heights used in this section range from 1/4 to 1/2 mm. The 
length and width of the rectangular cell are respectively 2.284 and 1.013 cm (see 
Part l), so that the horizontal thermal diffusion times are rhl = 686 minutes and 
rhs = 138 minutes across respectively the long and short sides of the cell. 

One point concerning the number of rolls in the cell must be kept in mind. For 
classical fluids, the aspect ratio indicates the number of rolls in the cell. However, for 
the data in this section the cell height d is comparable to the superfluid dissipation 
length &, so that superfluid effects do reduce the critical wavevector. For a fixed 
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r d I J d  G qc n 
(mm) (4 

44 0.519 0.22 21.2 2.57 36 
60 0.380 0.30 11.3 2.34 45 
67 0.339 0.33 9.03 2.26 48 
70 0.326 0.34 8.35 2.24 50 
73 0.311 0.36 7.60 2.19 51 
76 0.301 0.37 7.12 2.17 52 
78 0.293 0.38 6.74 2.15 53 
80 0.286 0.39 6.43 2.13 54 
83 0.276 0.41 5.98 2.09 55 
85 0.269 0.42 5.68 2.07 56 
90 0.255 0.44 5.11 2.03 58 

TABLE 2. The wavevector and number of rolls at the onset of convection for very large aspect 
ratios. At T = 2.087 K, the superfluid dissipation length 1, = 0.11 mm. qc is the critical wavevector 
expected from the calculations of Part 1 and n is the number of rolls at this wavevector that would 
fit into the cell assuming the rolls are parallel and aligned along the short side of the cell. d is 
the cell height. Also tabulated is the vertical thermal diffusion time z, for a thermal diffusivity of 
1.27 x cmz SKI. 

cell length, rolls with longer wavelengths mean fewer rolls. Table 2 lists the expected 
number of rolls n and their wavevector at onset q,. Without superfluid effects n = r 
and q, = 3.12. In the table n = r’rq,, rounded to the nearest integer. For r > 60, 
the wavevector reduction can be 25-35%. We have characterized in detail superfluid 
effects through the calculations and experiments in Part 1, and we emphasize that a 
reduction in qc and an elevation of Ra, are the only superfluid effects near the onset 
of convection. 

The wavevector reduction may also be of some advantage in these experiments. At 
this Pr, the infinite-r calculations have the skew-varicose as the relevant instability. 
For qc = 3.12 the instability occurs at r = Ra/Ra, = 1.4, while for qc = 2.2 
the boundary is pushed up to r = 4 (although superfluid effects may shift the 
stability boundaries). Until encountering a secondary instability, we expect ordered, 
stationary convection, and the wavevector reduction should allow a larger Rayleigh 
number range, without interference from secondary instabilities, in which to look for 
deviations from stationary convection. 

Our probe for disorder consists of examining time records of AT. All time series 
are digitized at a 2.5 Hz acquisition rate and Fourier transformed to obtain a power 
spectrum. In considering these time series, we use ‘fluctuations’ to characterize 
broadband temporal variations of the temperature difference, and ‘oscillations’ to 
characterize slow periodic variations of the temperature difference relative to the 
mean AT. The difference is illustrated in figure 24, where the data are scaled by the 
temperature difference at the onset of convection, AT,. Fluctuations are changes 6T 
in time about a constant mean AT. Oscillations, on the other hand, are coherent 
time-dependence of AT itself. Making this distinction, we find three regimes at the 
onset of convection as r increases. 

(a) At smaller r ,  the fluctuation amplitude remains constant below and above 
onset, i.e. fluctuations show the instrumental noise level of the experiment. There are 
no oscillations (figure 24a). 

(b )  At moderate r ,  the fluctuation amplitude is constant or increases slightly as 
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RGURE 24. Example t h e  records for r = 70. There are 50 rolls. (a) Below onset at r = 0.949. 
(b) fluctuations at r = 1.308. The signal amplitude in ( b )  is larger than in (a). ( c )  Oscillations at 
r = 1.365. At this aspect ratio and temperature, ATc = 7.152 mK and 7" = 8.35 s. The drifts in (a) 
and (b)  occur because these experiments are near the limits of their temperature accuracy. 

r increases above onset. The chief feature is a hysteretic transition to coherent 
oscillations at r = 1.3-1.6, the exact point depending on r (figure 24c). 

( c )  At larger r ,  the fluctuation amplitude increases continuously with r above 
onset and is correlated with the Nusselt number. There are again no oscillations 
(figure 24b). 

Item (a)  is not surprising: it affirms that at onset convection is steady and a large 
number of rolls form. Item (c )  is similar to the data of Ahlers & Behringer (1978) 
who measured the r.m.s. deviation of temperature fluctuations in a r = 57 cylinder: 
at large enough aspect ratio the fluid is non-stationary whenever it is convecting. 
Item (b)  is a new result of these experiments. There is a regime for aspect ratios 
between 60 and 85 where coherent oscillations in the fluid occur near the onset of 
convection. There is a crossover between ordered, stationary behaviour at onset for 
low r and temporal disorder for Rayleigh numbers arbitrarily close to (but above) 
the onset of convection for large r .  

To quantify the growth of the average fluctuation amplitude about AT, we have 
chosen, from several possibilities, to calculate the integral of the power spectrum or 
the total power defined as 

f f N v  

P = J', . PSDdf, 
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FIGURE 25. Spectra at r = 90 for increasing r = Ra/Ra, - 1. For clarity each spectrum is offset 
1 decade from the spectrum preceding it in r ,  except for the preconvective spectrum shown with a 
dotted line. The numbers to the left give r for each spectrum. As r increases, the total power in the 
spectrum increases, but the spectral shape stays constant. The arrow indicates the low-frequency 
cut-off f c  used in calculating P .  

where PSD is the power spectral density, f~~ is the Nyquist frequency, and f c  is a low- 
frequency cut-off. Spectra illustrating the increase of fluctuations and the oscillations 
are shown respectively in figures 25 and 26. The cut-off is needed because of small 
drifts in the time series, which can have an effect near zero frequency. The cut-off 
eliminates spurious drift effects from P .  The cut-off frequency is the same for all data 
in this section and is marked with an arrow in figure 25. The use of a fixed cut-off 
may in some cases underestimate P at larger r .  

Without oscillations the spectra from which P is calculated all have the same shape. 
Figure 25 shows examples from r = 90 over the entire accessible range of r .  The 
spectral shape is flat for several decades with a 'knee' frequency near one third of 
the vertical diffusion time. Above the knee, the spectrum falls off as f-4. Similar 
fall-offs are seen at smaller r in figure 26. Note that the knee frequency decreases 
with increasing r ,  even though the fluid characteristic frequency 7;' increases with 
decreasing d. The lock-in amplifier output contains a low-pass filter with an fP4 

(12 dB/octave) roll-off and a 3 s time constant. In the most extreme case, r = 90, 
the knee occurs at fz, = 0.3, or f = 0.06 Hz. Conversely, the instrumental cut-off of 
0.3 Hz corresponds, for r = 90, to f z, = 1.7. Referring to figure 25, the instrumental 
low-pass cut-off is nearly 6 times the observed knee frequency, so we conclude that the 
attenuation and roll-off above the observed knee frequencies is not due to the lock-in. 

Figure 27(a-c) shows plots of N and P as functions of r .  P is normalized by its 
average value below onset, Pb. In these plots the crosses denote N and are labelled on 
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FIGURE 26. Spectra at several large aspect ratios showing oscillations near the onset of convection. 
See table 2 for z, at each I'. In (a) there are spectral peak(s) at dimensionless frequencies of 0.012; 
in (b)  at 0.0044 with a harmonic at 0.0089; in (c )  at 0.006; and in ( d )  at 0.147, 0.355 and above. 
There is also always some spectral 'activity' at the knee frequency. This is a common feature in our 
data but does not have a clear explanation. The knee frequency also decreases with increasing r .  

the left-hand axis, and the squares denote P/Pb and are labelled on the right-hand 
axis. Filled squares show points with only fluctuations, and open squares show points 
with oscillations. It is not hard to distinguish whether oscillations exist for a given 
run. Beyond visual inspection, a more sensitive criterion for deciding on the existence 
at a given r of oscillations is to check the spectrum for peaks (figure 26). 

At r = 44, which corresponds to 36 rolls (table 2), figure 27(a) shows that we 
have the behaviour expected from steady convection. The Nusselt number is 1 in 
the absence of convective motion and rises sharply above 1 when convection begins. 
Thermal fluctuations are the same size above and below the onset of convection and 
are due to instrumental noise. There is steady convection at least up to r = 2. At 
r = 2, the signal goes through a long chaotic transient, at the end of which it is again 
steady but at a reduced Nusselt number. This is characteristic of the skew-varicose 
instability (Motsay, Anderson & Behringer 1988). We conclude that at I' = 44 we 
see the same behaviour near and above onset as is seen for lower r : a stationary set 
of rolls, most likely approximately parallel to each other and aligned along the short 
side of the cell. 
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FIGURE 27. Nusselt number and noise power as a function of r for (a) r = 44, (b)  r = 70, ( c )  
r = 90. The crosses are Nusselt data and go with the scale on the left. The solid squares are the 
integral of the power spectrum normalized by its average value below the onset of convection and 
go with the scale on the right. In (b )  open squares denote the presence of a sharp spectral feature. 
Arrows indicate data taken when raising or lowering r and the presence of hysteresis. In (c )  the five 
triangles are the power calculated from consecutive 1 rhl segments of a run unperturbed for 5 zh[. 
The large open circle is the power calculated from the entire unperturbed run. 

Unexpected behaviour begins as r increases to 60 and the number of rolls increases 
to 45. A hysteretic transition to oscillations occurs at r m 1.7. The fluctuation power, 
though, does not appear to increase above its background level. Similarly, for 50 
rolls (r = 70), this transition occurs near r = 1.35 and involves larger-amplitude 
oscillations than at r = 60. The fluctuation amplitude increases slightly above its 
background value. 

With the addition of five more rolls (r = 90), the correlation of power with 
Nusselt number becomes apparent. For n = 58 rolls, the power increases directly in 
proportion to the Nusselt number. Figure 28 shows this point explicitly by plotting 
P/Pb versus N .  The data fit a straight line well. Noteworthy also at r = 90 is 
that there are no oscillations, as there were at every other aspect ratio investigated 
above 44. 

A final point concerns the question of relevant time scales. The oscillation periods 
vary somewhat with r but are always on the order of ~ O O O T ,  w 202h, = 5 2 ~ .  Clearly, 
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N 
FIGURE 28. At r = 90 the Nusselt number and integrated spectral power are correlated. 

The line is a least-squares fit to the data for P / P b  > 1. 

the horizontal diffusion time is the important time scale here. However, each square 
point in figure 27 represents a time series approximately 1 zhl long. This is not long 
enough to unequivocally guarantee that measurements made after raising the heat 
current are made on a fully relaxed system. Unfortunately, the transfer of liquid 
helium into the dewar every 2 days produces more of a perturbation than changing 
the heat current: we cannot let the experiment sit undisturbed indefinitely. To partially 
address this problem, and to spot any trends in the power as a function of time, we 
have taken data undisturbed for the full 2 days between transfers, then calculated 
P from consecutive 17hl segments of the data. The five triangles in figure 27(c) are 
the integrated power from such segments out of a time series of total length 5 zhl .  

The large open circle is P calculated from the entire run. Segments 1, 3 and 4 
fall nearly on top of each other; segment 2 is slightly above and segment 5 slightly 
below the average. It is also relevant that we observe oscillations for weeks at a time 
( 1 5 ~ ~ , - 3 0 z ~ ~ ) :  after a transfer perturbation, the system will relax back into the same 
oscillatory state with same mean Nusselt number. This evidence is consistent with the 
system being fully relaxed while we take data. 

To conclude this section, we note the following points. As the number of rolls 
at the onset of convection is increased from 36 to 58, there is a changeover from 
ordered, stationary convection to disordered, time-dependent convection. Between 
the fully ordered and fully disordered states there is a crossover region that takes 
the addition of about 20 rolls to cross. At the beginning of the crossover region 
there are hysteretic transitions to coherent oscillations near the onset of convection. 
The Rayleigh number at which oscillations begin increases as r increases, while the 
Auctuation amplitude grows slowly or not at all. By the end of the crossover region 
the amplitude of disordered thermal fluctuations grows proportionally to the Nusselt 
number, while the onset of oscillations is pushed out to larger r and is no longer 
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hysteretic. For a large enough number of rolls, the noise power is amplified as soon as 
a convective velocity field exists, and the fluctuation amplitude is directly proportional 
to the convective amplitude. At r = 60, no fluctuations are discernible, whereas they 
are clearly present for r = 70. About 50 rolls seems to set the length scale at which 
the interior of the fluid can no longer feel the ordering effects of the sidewalls. We 
are left with the question of what sets this number? 

7. Summary, conclusions, and future directions 
This survey has focused on regions of low to moderate Pr and r and on the high-r 

region with Pr w 1. The regimes studied were chosen to address the dynamics of rolls 
near the codimension-2 point, the effects of aspect ratio on the oscillatory and skewed 
varicose instabilities, and the transition to near-onset chaotic flow. Conclusions on 
the individual topics are detailed throughout the paper. The survey has highlighted 
the richness and variety of the convective instabilities at low to moderate Pr. The 
survey is necessarily incomplete : large regions of Pr-r  space remained unexplored 
(cf. figure 1). Even so, two themes seem to appear repeatedly: bifurcations with 
symmetry (attractor destabilization, saddle node), and the dramatic changes caused 
by increasing the number of degrees of freedom (codimension-2, large r) .  

Much exploration and characterization remains. In some cases, such as the effect 
of r on secondary instabilities, we uncovered intriguing dynamics, which we have 
not yet fully explored. On the theoretical side, we have shown that superfluid effects 
are small at onset when A o / d  is small. It is reasonable to expect that the secondary 
instabilities are also little changed from the standard RBC instabilities in that case. 
However, as A,/d grows, the instability boundaries are likely to shift and unanticipated 
effects may emerge. Finally, the present experiments have not yielded the convection 
patterns ; information in this regard would be extremely valuable. 

This work has been supported by the NSF under grants DMR-9017236 DMR- 
9321791. 
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